More Information

About Us

About Us



HTMR Ltd is a privately owned company with a vision to provide clean, sustainable and safe energy to the world through the development and commercialization of Thorium as a fuel source. HTMR is a sister company of STL.

STL owns:

- Steenkampskraal Thorium Limited who own the rights to the thorium at the Steenkampskraal monazite mine in South Africa

- Steenkampskraal Thorium Limited who own a significant share in THOR Energy in Norway, where an irradiation program is underway to characterize and qualify thorium-based fuel for deployment in Light Water Reactors (LWRs),

HTMR100 owns:

- A concept design of the HTMR100 (100 MWthermal ,35 MWelectircal) pebble bed reactor. The HTMR100 is a high temperature gas-cooled reactor (HTGR) with a thorium or uranium based fuel cycle. HTMR Ltd has embarked on a project to produce clean, safe, economical and accessible energy to a wide range of energy consumers. This project is known as the HTMR100 Nuclear Power Plant (HTMR100 NPP). The HTMR100 NPP is an inherently safe, modular pebble bed type reactor that burns uranium or thorium based fuel which produces less, and more acceptable waste compared to other nuclear power generation technologies. The HTMR100 NPP can be constructed in a relatively short time at almost any location. It is predicted that the inherent safety features of the reactor simplify the licensing process significantly compared to other nuclear power generation technologies.

Thorium as a nuclear fuel is becoming increasingly important to meet the world’s energy demands (Thorium is three to four times more abundant than uranium in the earth’s crust). The HTMR100 NPP can utilize Th based fuel with high burn-up rates which has great proliferation advantages in the sense that it produces very little to no 239Pu. The reactor design can accommodate various fuel types with different fuel cycles, including mixtures of thorium and plutonium, thorium and uranium or low-enriched uranium (LEU). For example, the thorium/plutonium fuel mix can be utilized to reduce the world’s stockpiles of plutonium by incinerating it in this reactor.

The HTMR100 NPP can be constructed inland due to limited tritium production. Furthermore, the favorable economic feasibility, short licensing process, ease of operation as well as the modular construction design, makes it a strong contender in the energy sector. The HTMR100 NPP can serve as a base load power supplier but have relative good load following characteristics and is therefore ideally suited as a remote standalone power plant. The HTMR100 NPP features an indirect steam cycle and can therefore be used for driving a steam turbine, supply steam for industrial process heat applications as well as cogeneration applications.

The High Temperature Gas cooled Reactor (HTGR) technology was chosen for the HTMR100 NPP due to the following considerations:

• The HTMR100 reactor is intrinsically safe because its core is meltdown-proof. This

characteristic ensures that the HTMR100 NPP can withstand a Fukushima-type incident.

• The HTMR100 reactor addresses the risk of nuclear weapons proliferation due to the fact

that: – its thorium fuel cycle does not produce plutonium which is used in nuclear weapons.

– it can reach high burn-up rates which fully utilizes fissile material in the reactor.

• The HTMR100 reactor will produce less hazardous nuclear waste, which benefit waste

management problems.

• The HTMR100 concept is economically attractive compared to other nuclear technologies

due to its advanced design features:

– Modularity reduces construction period.

– System standardization and design simplicity create upstream economies of scale.

– Reduced number of required safety functions/systems reduces costs.

• The HTMR100 NPP is a CO2 emissions free source of base-load power with high availability

and suitable for distributed generation.

• HTMR Ltd who owns Steenkampskraal Thorium Limited, owns the rights to significant

thorium reserves in South Africa and therefore aims to commercialise a thorium-based

High Temperature Gas Cooled Reactor (HTGR)

Previous studies showed that the smallest economically viable HTGR- NPP, is 70 to 100 MWth. For this reason, the HTMR100 NPP was designed as a 100 MWth unit, with a corresponding electricity production of 35 MWe. In addition, the majority of the electrical grids in the world today cannot accommodate large power sources, which created the demand for smaller power sources to increase significantly. The HTMR100 is therefore ideally suited to be used as a standalone plant or in groups of module (multi-module plant). Initially the HTMR100 NPP will probably serve a niche market where small to medium power sources are required, such as small communities or remote industries like mines or smelters, etc.

The design philosophy of the HTMR100 NPP can be described as simplification and optimization of proven technology within acceptable safety criteria. The European nuclear safety principles in combination with USA requirements were provisionally adapted as design basis for the HTMR100 NPP.

 The following design criteria have been followed in the HTMR100 NPP design:

a.) Simplicity

b.) Multiple defence levels

c.) Factory manufacturing as far as practicable/ possible

d.) Simple operation

e.) Ease of maintenance

f.) Safety design for external events such as earthquakes, airplane crashes, etc.

The HTMR100 NPP project aims to design, license and construct the first plant in the next

5 to 7 years


Copyright 2014 HTMR100. All Rights Reserved.

Latest News


• No reliable A-bomb with thorium reactors

• about Thorium


  Steenkampskraal thorium to be used in pebble-bed reactors


  Thorium To Be Tested in a Working Nuclear Reactor


  Norway to commence testing of promising new nuclear fuel

Contact Details


Tel: +27 (12) 621 4018

Fax: +27 (86) 552 9861